Field Testing of Feedforward Collective Pitch Control on the CART2 Using a Nacelle-Based Lidar Scanner

D. Schlipf¹, P. Fleming², F. Haizmann¹, A. Scholbrock², M. Hofsäss¹, A. Wright², P. W. Cheng¹

¹Stuttgart Wind Energy (SWE), Germany
²National Renewable Energy Laboratory (NREL), USA
Why should you control a wind turbine with lidar?

- wind is a disturbance
- knowing the disturbance, control can be improved
- used in daily life, e.g. bicycle
- for wind turbines several possibilities

<table>
<thead>
<tr>
<th>SWE Simulation Study</th>
<th>Benefits</th>
<th>Potential</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collective Pitch Feedforward</td>
<td>less loads</td>
<td>+ +</td>
<td>-</td>
</tr>
<tr>
<td>Direct Speed Control</td>
<td>more energy</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>Nonlinear Model Predictive Control</td>
<td>more energy</td>
<td>+</td>
<td>-- --</td>
</tr>
<tr>
<td></td>
<td>less loads</td>
<td>+ + +</td>
<td>--</td>
</tr>
<tr>
<td>Lidar Assisted Yaw Control</td>
<td>more energy</td>
<td>+</td>
<td>--</td>
</tr>
<tr>
<td>Cyclic Pitch Feedforward</td>
<td>less loads</td>
<td>+</td>
<td>-- --</td>
</tr>
</tbody>
</table>

Test the most promising!
Content

- Test Environment
- Controller Design
- Preparation
- Correlation Study
- Results
- Evaluation
- Conclusions and Outlook
Test Environment

scanning lidar on the CART2

CART2
\(D = 42 \, \text{m} \)
\(P = 600 \, \text{kW} \)

commercial lidar on the CART3
[AI AA2013]

met mast
control engineers

National Wind Technology Center
Boulder, Colorado, USA
from March to August 2012

mirror with 2 DOF
Controller Design
Feedforward Controller

Control Goal
minimizing rotor speed variation

Feedforward Controller
- static pitch curve
- prediction time τ

Advantages
- simple update
- guaranteed stability
- 1 design parameter τ
- few model information
Controller Design
Simulated Extreme Loads

- FAST CART2
- perfect lidar measurement
 - only small preview necessary to compensate the pitch actuator
 - reduction overspeed from 2% to 0.02%
 - “side effect”: less loads

But not realistic, because
- wind is much more complex disturbance
- wind cannot be measured perfectly
Controller Design
Feedforward Controller + Adaptive Filter

Control Goal
minimizing rotor speed variation

Feedforward Controller
- static pitch curve
- prediction time τ

Adaptive Filter
- fitted filter $\approx G_{RL}$
- cutoff at maximum coherent wavenumber

Diagram:
- $v_0 L$ input
- G_{RL} filter
- θ_{FF} output
- Ω_{rated} input
- Ω output
- \hat{k} wavenumber
- τ time
Controller Design
Feedforward Controller + Adaptive Filter + Reconstruction + Timing

Reconstruction
- assuming perfect alignment
- combination to one rotor effective wind speed v_{0L}

Timing
- assuming Frozen Turbulence
- considering filter time delay
- buffering remaining time

= Adaptive Feedforward Controller
- depends on mean wind speed
- adjusted by τ and \hat{k}
Preparation

- installation with crane
- real time application
- integration in the control system via Modbus

- customize trajectory with model [ISARS2012]
 - best correlation:
 - circle 6 points
 - \(r = 0.25D \)
 - \(x = 2D \)
Correlation Study
Estimation Rotor Effective Wind Speed from Turbine Data

simple nonlinear estimator:

\[J \dot{\Omega} = M_a - M_{LSS} \]

\[\frac{1}{2} \rho \pi R^2 c_p(\lambda, \theta) v_0^3 / \Omega \]

\[\Omega R / v_0 \]

\[\nabla \text{lidar better correlated to the turbine than the met mast} \]
Correlation Study
Adjusting the Adaptive Controller - Timing

- timing adjusted by cross correlation $\tau = -0.6s$
- Frozen Turbulence seems to be mostly a good hypothesis
Correlation Study
Adjusting the Adaptive Controller - Filter

- maximum coherent wavenumber mostly detected at \(\hat{k} = 0.06 \text{ rad/m} \)
- but sometimes worse – why?
Correlation Study
Blade Impact and Hard Target Problem

- blade impact not really an issue due to the fast spinning turbine
 - points removed by CNR threshold
- hard targets due to guy wires/met mast
 - cutoff the Doppler spectra
Results
Time Domain

smooth activation

some improvement!

low wind speed
Results

Frequency Domain

data divided in blocks of 32 s

- similar wind distribution
- reduction in standard deviation of the generator speed of 30% at low frequencies
- but increase of 30% before solving the hard target problem
- similar behavior for the tower base bending moment and other loads
- in total only 15 min due to low wind conditions and technical problems
Evaluation - Could we have done it better?

Hybrid Simulations
- feeding v_0 into FAST
- using original lidar data and original controller
- brute force optimization (81 x 5 min simulations) comparing to feedback only
 - used parameters close to optimal values
- retuned feedback controller
 - filter design seems to be independent from feedback
 - more load reduction possible
 - higher prediction time benefits load reduction
Conclusions

- first proof of concept on a small turbine: spectra show expected behavior!
- correlation can be used to design a filter to avoid wrong pitch action
- adaptive filter depending on the mean wind speed and current correlation needed
- feedback controller should be retuned to get more load reduction
Outlook

- future campaigns
 - other CART control campaign
 - onshore wind turbine of the MW class
 - offshore wind turbine at alpha ventus (LIDAR II project)

- investigation for floating wind turbines
Thanks for you attention!

Acknowledgement
Thanks to all persons from NREL and SWE involved in the campaign.